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J. Phys. A: Math. Gen. 21 (1988) 3559-3574. Printed in the U K  

Multi-kinks in modulated crystals: the soliton lattice of the 
frustrated 44 model 

J J M Slot? and T Janssen 
Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, 
The Netherlands 

Received 21 December 1987, in final form 6 May 1988 

Abstract. The dynamics of multi-kinks (soliton lattices) in a linear chain system with 
frustration, in which incommensurate phases occur, is studied using a combination of 
analytical and numerical techniques. The multi-kinks are found to have a complex structure 
when frustration is present in the system, in contrast to multi-kinks in non-frustrated systems. 

1. Introduction 

In a recent paper [ l]  (hereafter referred to as I) we studied the dynamics of single 
kinks in a model for crystals with a quasiperiodic distortion, the so-called incommensur- 
ate displacively modulated crystal structures. This model, the DIFFF (discrete frustrated 
44) model, consists of a chain of classical particles. Each particle has one degree of 
freedom denoted by x,, and is harmonically coupled to its nearest and next-nearest 
neighbours. In addition, each particle moves in a anharmonic (quartic) site potential. 
The Hamiltonian of the system is therefore given by 

The ground state of the model was studied in detail as a function of the parameters 
[ 2 ] .  This ground state depends on the two ratios AID and BID. Figure 1 shows the 
various ground-state configurations as a function of these ratios. When IB/ D(  < 4 an 
incommensurate ground state is possible (hatched regions). Essential for this is the 
competition between first-and second-neighbour interaction, in particular a non-zero 
value of D. 

The strategy we followed in I to study the dynamics corresponding to the above 
Hamiltonian was twofold. On the one hand we numerically integrated the correspond- 
ing equations of motion for finite chains but in doing so we were guided by the results 
we obtained from an analysis of a continuum approximation to ( 1 . 1 ) .  Within this 
one-mode continuum approximation which is valid for a system with a ground state 
in one of the so-called ‘sinusoidal’ regions of the phase diagram (figure l ) ,  we found 
the explicit form of the single kink. This solution of the equations of motion of the 
continuum model consists of a non-trivial variation of the amplitude and the phase 
of the ground-state configuration. This kink is different from the well known kink of 
the ordinary (non-frustrated) 44 model. For instance its so-called topological charge, 
i.e. the asymptotic phase difference in units of 27r which the kink spans, is not fixed 
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Figure 1. Phase diagram of the discrete frustrated (b4 model. Each point in this diagram 
corresponds to a ground state of the model. Indicated are the small-period commensurate 
phases by their wavevector. The shaded regions correspond to incommensurate phases 
and to long-period commensurate phases. 

to 1 as for the ordinary # 4  kink, but can have any value between 0 and 1 depending 
on the parameters of the model (A,  B and D ) ,  the wavevector of the ground-state 
configuration and the velocity of propagation. The reason for this difference can be 
found in the appearance, in general, of the so-called Lifshitz term in the Landau- 
Ginzburg-like continuum Hamiltonian which can be derived starting from (1.1). The 
equations of motion of the continuum approximation are formally identical to those 
for a particle with two degrees of freedom in a potential. The coefficient of this Lifshitz 
term can be interpreted as a magnetic field strength, as was shown in I. Now when 
this strength goes to zero the ‘frustrated’ kink reduces to the ‘non-frustrated’ continuum 
kink. We also showed in I that, when we use this ‘frustrated’ continuum kink as the 
initial configuration in the integration of the discrete equations of motion for a finite 
system, it very rapidly relaxes to a ‘frustrated’ discrete kink. 

For the ordinary # 4  model, but also for other models like the sine-Gordon model 
and the Takayama-Lin Liu-Maki (TLM) model for trans-polyacetylene, one can also 
find, besides the single-kink solution, the so-called soliton lattice solution or multi-kink 
solution. This was for instance done by Horovitz [3] in the case of the TLM model. 
The soliton lattice in these models consists of regularly spaced alternating kinks and 
anti-kinks. Such a solution can also be found in the one-mode continuum limit of the 
DIFFF model, although as we will see this will not be a periodic solution in general. 
This solution and some of its properties will be the main subject of the present paper. 
Furthermore, we will give some numerical evidence of the existence of a corresponding 
solution in the discrete system. 

In the next section we will briefly recall the continuum model in the one-mode 
approximation starting from Hamiltonian (1.1). More details of this derivation can 
be found in I. Furthermore in this section we will discuss briefly the single-kink 
solution of the corresponding equations of motion. The third section is devoted to 
the actual soliton lattice solution in both the continuum and discrete model. The 
soliton lattice solution in the continuum model is a more general solution of the 
corresponding equations of motion than the single-kink solution. Therefore, this 
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single-kink solution can be recovered from the soliton lattice solution by taking an 
appropriate limit. This limit will be discussed in appendix 2 .  Finally, some conclusions 
will be given in P 4. 

2. Continuum model 

In this section we will briefly discuss the continuum limit of the discrete Hamiltonian 
( 1 . 1 )  in the so-called one-mode approximation. This procedure was treated at length 
in I. Therefore we will present here only the result and the main line of reasoning. 
The idea of the one-mode approximation stems from the observation that when the 
model parameters A, B and D are chosen such that we are in a region of the phase 
diagram (figure 1 )  just below the transition line from the P (para) phase to one of the 
modulated phases, the ground-state configuration is approximately described by 

This ground-state configuration can be periodic (a superstructure) or incommensurate. 
The latter we also approximate by a superstructure. Therefore we can write 

p) = A sin( qn + 4 ) .  ( 2 . 1 )  

q = 2 v L /  N (2.2) 
with L and N coprime and possibly very large. Various values of Ll N are shown in 
figure 1 .  In the remainder of this paper we will restrict ourselves to the case N f 1 , 2  
or 4. The reason is that both cases N = 1 and N = 2 lead to the ordinary 44 model 
and thus to the ordinary 44 soliton lattice solution. The case N = 4 is more complicated 
as we showed in I .  However, in the so-called constant amplitude approximation (CAA) 

[4] the continuum model reduces to the well known sine-Gordon model [ 13, and leads 
therefore to the soliton lattice solution corresponding to this model [ 5 ] .  The ground- 
state configuration ( 2 . 1 )  with fundamental ‘wavevector’ q ( 2 . 2 )  is an N-fold superstruc- 
ture. This superstructure will be M-fold degenerate, where M = N if N is even and 
M = 2N if N is odd. These M degenerate phases all have the same amplitude A, but 
a different phase angle 4, i.e. 

(j=O,. . . , M -  1 ) .  (2.3) 

It is clear that, due to this degeneracy of the ground state, kinks or domain walls 
naturally appear as low-lying static excitations of the system, because they locally 
connect different degenerate ground-state phases. 

To derive the appropriate continuum Hamiltonian in this ‘sinusoidal’ region of the 
phase diagram, we make the following ansatz: 

where the complex ‘order-parameter’ field Q(5, t )  is a slowly varying function of 5. 
By slowly varying we mean here that if 

x,( t )  = ei4“Q( n, t )  + e-jqnQ*( n, t )  (2.4) 

a Q  
a t  

then Q ’ = - = O ( E )  and Q”, Q” = O ( E ’ )  etc 

where E << 1. This assumption is justified when the typical width of a kink in the system 
is large enough ( 3 3  unit cells). The procedure to follow consists of substituting (2.4) 
in the Hamiltonian ( l . l) ,  sum out all the fast varying terms (i.e. those terms which 
have as a factor some power of exp(iqn)), replace the sum over n by an integral over 

and eliminate all appearing ‘surface’ terms. 



3562 J J M Slot and T Janssen 

As was shown in I the equations of motion for Q and Q*, or more conveniently 
for the real fields U and U defined by Q = (U - iu)/2, are in their stationary form given 
by 

U ” =  r u + H v ’ + s u ( u 2 + v 2 )  

v”=rv-Hu‘+sv(u2+u2) .  

The parameters r, s and H in (2.6) are defined by 

where 

a = A + 2B cos( q )  + 2 0  cos(2q) 

b = B sin( q )  + 2 0  sin(2q) 

C’E - (B ~ 0 s ( q ) + 4 0   COS(^^)). 

It is sufficient to study (2.6) because any travelling solution to the full time-dependent 
equations of motion can be obtained from a solution of (2.6) by a mere ‘boost’ [l]. 
By viewing 8 as a ‘time’ variable, (2.6) can be interpreted as the equations of motion 
of an integrable classical system with two degrees of freedom, i.e. a particle moving 
in a plane perpendicular to a homogeneous magnetic field with strength H, in a 
non-linear central potential (inverted ‘mexican hat’) 

It is integrable because there are two integrals of the motion, namely the ‘energy’ E 

and the ‘angular momentum’ LA 

E = i ( u ’ 2 + u ’ 2 ) +  U ( p )  (2.10) 

L,= u u ’ - u ’ u + f H ( u 2 + u 2 ) .  (2.11) 

The solution of the stationary problem is completely determined once these two integrals 
are specified. For instance in I we showed that the single-kink solution, which we 
referred to as the H # 0 solitary wave, corresponds to 

rH L =--=AH 2 

2s 2 Po. & = O  and 

This solution, which only exists for H 2 <  -2r, is given by 

4 5 )  = m sin 4(5) 
45) = m cos 445) 

with 

r v L  
= ----sech2(fvg) s 2s v 2 =  - ( ~ ~ + 2 r ) > 0  

(2.12) 

(2.13) 

(2.14) 
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and 

d( 6) = d( -CO) - tan-' (G) -tan-' (S tanh( iv6)  ) . 
So the topological charge or winding number of 7 of this solution is equal to 

(2.15) 

(2.16) 

In the next section we will construct the soliton lattice solution of (2.6). 

3. Soliton lattice solution 

The origin of the specific values (2.12) for the two integrals of the motion in the case 
of the single kink is to be found in the boundary conditions for the single kink, namely 

because, by definition, a single kink connects in an asymptotic sense two degenerate 
ground-state phases { p  = po;  + E [0,27r)} and has a finite creation energy with respect 
to the ground-state energy. The interpretation of these boundary conditions is clear 
within the mechanical model. The mechanical particle has to start in the infinite past 
on the brim of the inverted mexican hat with an infinitesimal velocity directed inwards, 
in order to end in the infinite future on that same brim with a zero velocity. When its 
angular momentum L, is non-zero it will experience a centrifugal repulsion near the 
origin and will therefore avoid the origin during its course through the inside of the 
inverted mexican hat. The condition for the existence of the single kink which we 
mentioned in the previous section, i.e. H2 < -2r ,  is in fact a condition for the existence 
of a local minimum between 0 and po  of the effective radial potential, as was shown 
in appendix B of I. It is easy to verify that the effective radial potential (see appendix 
1) maximally has one local minimum in combination with one local maximum, the 
condition for this being in general 

0 s  I;: < $ s ( p i +  H2/4s)3. (3.2) 

It is clear because of the unboundedness of the inverted mexican hat, and therefore 
of the effective radial potential, that one needs such a local minimum in order to have 
a bounded motion of the mechanical particle. For an angular momentum L, which 
satisfies (3.2) these local extrema are located at 

pm," = { f ( 
pmax = [ + (.:+$) (1 + 2  cos ;)] 

[ 1 - 2 cos 

I / 2  (3.3) 

where CY is defined through 

(3.4) 
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For instance in the case of the single kink one has pmax = po. In general, however, 
pmax can be everywhere with respect to po. The same is true for pmin,  although one 

It is clear that the motion of the mechanical particle is completely determined once 
we specify its initial position and its initial velocity (four initial conditions). Alterna- 
tively we can also specify L,, p , = p ( O )  and p i = p ’ ( O ) .  Of course in this case the 
motion is not completely determined, because the initial phase 4I = 4 ( 0 )  is still free. 
Without losing generality one can always assume that the initial point is a so-called 
turning point of the motion, i.e. pi  = 0. The initial angular velocity 4 ;  = 4’(0) and the 
energy E now follow from 

always has P m i n  < Pmax . 

(3.5) 

(3.6) 

Furthermore, one can always assume that pmln G p l  S pmax. I t  is now easy to see that 
when 4 ;  = 0 one can only have p ,  s pa 6 pmax. For a non-zero 4 ;  one can also have 
Po< PI.  

Generally speaking, a soliton lattice is a configuration which consists of a regular 
array of degenerate (near-)ground-state phases separated by domain walls. This is 
why one also uses the name multi-kink or kink lattice for such a configuration. 
Furthermore one usually assumes that the typical width of the kinks is small compared 
to their mutual distance, so large portions of ground-state phase are separated by 
narrow walls. This means that the order-parameter field Q will show a slow variation 
between two kinks, and a relatively fast variation when passing through a kink. Now 
let us translate all of this in terms of our mechanical model. First of all we have to 
bear in mind that every orbit of the mechanical particle corresponds to an order 
parameter varying in the system, i.e. an order-parameter field Q( 0, and that the velocity 
field of the particle therefore corresponds to Q’(5) .  We know that near a classical 
turning point (here we have actually a turning circle) the particle will have a small 
radial velocity which eventually becomes zero at the turning point. The angular velocity, 
however, does not have to be small near or at a turning point. The motion near one 
of the turning circles has to correspond to a (near)-ground-state phase. Thus one of 
the turning circles p = p l  or the other one has to be close to p = po. Now when the 
angular velocity is non-zero at the turning circle closest to the ground state p = pa ,  one 
will have no single (near-)ground-state phase between two kinks, but one will pass 
gradually through a whole bunch of (near-)ground-state phases in going from one 
kink to the next one. So we have to conclude that our soliton lattice solution has to 
correspond to a motion for which 4 ;  is small. We take here the extreme case 4 ;  = 0 
and thus p I  s po. We can therefore write 

& = I  2 r2 2Pl41 - a s ( P ; ‘ - P 3 2 .  

p : =  p i  - A A 2 0 and small. (3.7) 

Furthermore from (3.5) and (3.6) it follows that for a soliton lattice solution we have 

(3.8) L = I H  2-1H 2 
1 2 P I - 2  Po-4HA 

and 
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By using the equations of motion for U and v (2.6) and the two integrals E and L ,  
(2.10) and (2.11) and doing a little algebra, it is not hard to derive the following 
equation for U’+ U’, which we will denote by R from now on: 

R ” = ~ E  +2HL,+r2/s+(4r-H2)R+3sR2.  (3.10) 

The constant term in this equation is positive. This can be deduced using (3.8) and (3.9) 

(3.11) 
r2 

4~ + 2HL, +- = ( H 2 +  2sA)R, + sn:> 0 
S 

with R I  = p:. By integrating (3.10) once we get 

&” -[( H2+2sA)R,  + sR;]R+~(H2-4r)R2-  sa3 = constant. (3.12) 

The value of this constant follows from the boundary condition 

R’=O when R = R , .  (3.13) 

Therefore it is easy to see that this constant is equal to -;H’R:. Thus (3.12) can be 
written as 

The solution of this last equation is implicitly given by the quadrature 

(3.14) 

(3.15) 

with R ( t )  the following third-order polynomial in t :  

The zeros of this polynomial can easily be found and are given by 

RI=Ro-A (3.17) 

R, = ;(no + A + H2/2s )  f ;[ ( n o  + A - H2/2s)’ + (4H2/s)A] ”’. (3.1 8) 

These zeros are arranged in a definite order 

O<R- <RI < R o + A < R + .  (3.19) 

The proof of this ordering is given in appendix 1 .  In this same appendix we show, 
by an analysis of the effective radial potential, that the condition for the existence of 
a non-trivial motion is given by (equivalent to (3.2)) 

o<n- < R I .  (3.20) 
For a non-zero value of A this is always true, irrespective of the value of the magnetic 
field H. This is in contrast to the case of the single kink ( A  = 0), because there a similar 
condition to (3.2) is only fulfilled when 

H2 < - 2 r  (3.21) 

as was shown in I. Now the radial motion of the mechanical particle takes place 
between the following bounds: 

R - s  R s  a,. (3.22) 
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As initial position we take for reasons of convenience n(0) = a- instead of a(0) = 0,. 
Thus (3.15) becomes 

(3.23) 

This last integral can be expressed as an incomplete elliptic integral of the first kind 
F ( 4 ,  k) (see for instance [6]), namely 

(3.24) 

with 

and elliptic modulus 

where O <  k < 1 on account of (3.19). Therefore a(() can be expressed in terms of the 
Jacobi elliptic function sn( U, k ) ,  the so-called sine amplitude, by inverting (3.24) 

fl(&)=L+[0,-0-] sn'(A5, k ) .  (3.25) 

This sine amplitude sn(u, k) is a periodic function of U with period 

d0  
(1 - k2 sin2 0)1'2' 

4 K (  k) = 4F(f.rr, k) 4 (3.26) 

K ( k )  is known as the complete elliptic integral of the first kind. Because sn(-U, k) = 
-sn(u, k),  we have that R is periodic with period 

(3.27) 

This period lies somewhere between 

The equation for the phase 4 ( ( )  is easily obtained by transforming L, (2.11) using 
(2.13) 

(3.28) 

(3.29) 

If we now substitute (3.25) in this expression, we end up after some algebra with 

(3.30) 
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or 

1 - P 2  sn2( u, k) 
(3.31) 

where on account of (3.19) we have 0 < - p 2  < a. Again we can express this last integral 
in terms of an incomplete elliptic integral, but now one of the third kind rI(4, P 2 ,  k) 
[6], namely 

where the amplitude am(u, k) is defined by 

sin(am( u, k ) )  = sn( u, k) 

and H(4, P2,  k) by 

(3.33) 

(3.34) 

The phase 4(5)  (3.32) has the following property. If we write [ as 

with T given by (3.27) and -+T < i S f T  (this is unique), then 

( = n T + i  for some n E Z (3.35) 

4(5) = 4 ( i )  + n A 4  (3.36) 

where 

(3.37) 
H 
h 

A 4  =- {K(k)  + ( p 2 -  l)l’’I(f~, P 2 ,  k)} 

which we define as the phase difference of the soliton lattice. It now follows that, 
when this phase difference is some rational multiple of 27r, we have a periodic soliton 
lattice, i.e. when 

A 4  = 2 m / m  for some n, m E 2. (3.38) 

When this is not the case we have an incommensurate soliton lattice. Figure 2 shows 
an example of the phase and amplitude of an incommensurate soliton lattice. Needless 
to say, a moving solition lattice can be obtained by boosting [ 11. This will again imply, 
just as in the case of the single kink, that the phase difference will depend on the 
velocity of propagation U. The total energy of a static soliton lattice configuration is, 
of course, infinite. However, because the energy density (Hamiltonian density) can 
be expressed entirely in terms of O ( t ) ,  we can calculate the energy per period T (3.27), 
i.e. 

E -1 2 
T /  2 

d[{f(u”+ U ’ ~ ) + + H ( U U ‘ -  u’u)+fr (uZ+ u 2 ) + a s ( u 2 +  u ~ ) ~ +  r2/4s}. 
o - 2 c  L2 

(3.39) 

This can be written, using the integrals of the motion, as 

E o = -  dw{fA2+(A+H2/4s)(R,  -a-) cn2(w, k ) + + ( R ,  cn4(w, k)} 

(3.40) 

with cn( w, k )  the so-called cosine amplitude, which is related to the sine amplitude 
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Figure 2. Sketch of the phase r$ and the amplitude p = fi as a function of 5. 

via cn2(w, k )  = 1 -sn2(w, k ) .  All the integrals in (3.40) can be done, leading to 

SCL 
E o = g  { K ( k ) A *  +2[A + H2/4)s](n+ - O-)[ E (  k )  - ( 1  - k 2 ) K (  k ) ]  

+$(a+ - n - ) ’ [ ( 2 k 2  - 1)E( k )  +;( 1 - k 2 ) ( 2  - 3k2)K( k ) ] } .  (3.41) 

In this last expression E ( k )  is the so-called complete elliptic integral of the second 
kink, which is defined by 

(3.42) 

In the case of the single kink we argued in I that it is linearly unstable. The main 
reason for this instability is the fact that the initial phase is a free parameter combined 
with the fact that the potential in the one-mode continuum limit is rotationally invariant 
in the U-U plane. The same is true for the soliton lattice solution. Therefore we may 
expect that this solution is also linearly unstable in this continuum limit. The proof 
of this conjecture is, however, far more difficult than in the case of the single kink and 
is at the present time not known to us. 

Mechanisms, like we discussed in I, which pin the phase of the single kink are of 
course also valid for the soliton lattice solution, i.e. phase pinning via coupling to 
higher harmonics of the fundamental mode. 

We will end this section with a short discussion concerning the existence of the 
soliton lattice configuration in the discrete system. One way to reveal such a solution 
in a discrete system is to integrate the discrete equations of motion, thereby using the 
continuum solution as an initial condition. The hope is then that this continuum 
solution is near the discrete one, so that it quickly relaxes to this discrete solution. 
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Figure 3. Propagating soliton lattice within a N = 6 superstructure. The displacement of 
the third particle in each unit cell is given for six successive times separated by 20 time steps. 

The details of the method we use for integrating the discrete equations of motion can 
be found in I. 

The result of one such calculation is shown in figure 3. In this picture we have 
plotted the displacement of every third site in each of the 240 unit cells, containing 
six particles each, of this finite system, at successive intervals of 20 time steps. The 
parameters A, B and D are in this case 0.734, -0.480 and 0.260, which implies that 
A/D=2.833 and B I D =  -1.846. In the phase diagram (figure 1) this corresponds to 
a point in the 'sinusoidal' region of the N = 6 superstructure phase. The reason for 
looking at each third site is, of course, t o  eliminate the fast varying n dependence 
(eii4") in x, (cf (2.4)). The value of A we took was which is small with respect 
to the current value of a,, namely 8 x The initial velocity we took was U = 0.525. 
With these values of the parameters the period T of 0 in the initial configuration is 
about 90 lattice constants and the phase difference A +  is near n /4 ,  actually A+ = 
- 0 . 2 5 7 8 ~  (which makes it a so-called incommensurate soliton lattice). The whole 
system (16 x 90 = 1440 sites) makes up nearly two whole periods of the soliton lattice. 
Concluding we can say that this figure clearly demonstrates the existence of a propagat- 
ing soliton lattice in the discrete system with no shape change during its propagation 
through the system. At both ends one notices some disturbance, but this is entirely 
due to the fixed BC we use in the calculation. Notice that such a kink lattice with 
Ad =an does not connect degenerate ground states (Ad = n / 3 )  and can, therefore, 
only occur in this sinusoidal region. Actually it is surprising that it is so stable in the 
numerical example. 

This example just shows that there exists a solution with a rather long lifetime 
consisting of a moving lattice of kinks. A more systematic treatment of these solutions 
and their stability is in progress. 

4. Concluding remarks 

We have investigated the presence and some of the properties of a multi-kink or soliton 
lattice in a linear chain system with frustration in which incommensurate modulations 
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occur. The procedure was, as in the case of the single kinks [ l ]  a combination of 
analytical techniques applied to a continuum approximation of the model and numeri- 
cal integration of the equations of motion. The main results are the following. 

In contrast to soliton lattices in systems without frustration, the soliton lattices in 
a system with frustration have a rather complex structure. 

A soliton lattice in a frustrated system does not have to be periodic at the level of 
the continuum approximation. This is due to the fact that the amplitude of the soliton 
lattices, which is a periodic function, and the increase in the phase in such a period 
are in general incommensurate with respect to one another. 

Even if the soliton lattice is commensurate in the above sense, it will in general be 
incommensurate with respect to the underlying discrete lattice. 

Just as in the case of the single kinks we have again that the phason velocity is the 
upper limit for the velocity of propagating soliton lattices. 

Moving soliton lattices keep their form over long distances, which establishes the 
presence of well defined soliton lattices in a discrete system. 

Appendix 1 

In this appendix we wi!l analyse the effective radial potential which the mechanical 
particle feels in the case of the soliton lattice solution. In particular we will give a 
proof of the definite ordering (3.19), i.e. 

0 < R- < R,  < R,+A < 0,. ( A l . l )  

This effective radial potential can be derived by first transforming the energy E of the 
particle ((2.10) and (3.9)) 

(A1.2) E = - f ~ A ~ = i ( u ’ ~ + u ’ ’ ) - - r ( u  2 2  + U  ) - f ~ ( u ’ + u ’ ) ~ - r ~ / 4 s  

to polar variables p and 4 by using 

(Al.3) 

This leads to 

(A1.4) 

4’ can be eliminated from this last expression by using the angular momentum L, in 
polar variables 

L ,  = f H p : =  - p 2 4 ’ + i H p 2 .  (A1.5) 

E = f ( p  I 2  + ~ ’ 4 ’ ~ ) - f r p ‘ - t s p ~ -  r2/4s. 

Thus 

r2 1 U efi ( P ) - - --- 4s i rp2  - fsp4 + Q H 2  7 ( p 2  - P : ) ~ .  
P 

(A1.6) 

(A1.7) 

This potential only depends on p through R 
analyse ueff(R) = U e f f ( a ) ,  which can be written as 

p2 .  Therefore it is more convenient to 

1 
R 

Uefi(R) = - fs(R - a,)’ + $ H 2  - (0 - (A1.8) 
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The first term constitutes the inverted mexican hat u IMH(R)  and the second term the 
effective centrifugal potential o:T(R). A sketch of both these potentials and their sum 
is shown in figure 4. It is not hard to see that the solutions of the equation 

(Al.9) Uefi(R) = E = -:sA2 

are given by (3.17) and (3.18), i.e. 

RI=Ro-A 

fl, =f[Ro+A+ H2/2s]*f[(R0+ A -  H 2 / 2 s ) ’ +  (4H2/~)A]’”.  
(A1.lO) 

For the expression for R, it is immediately clear that 

0, > Cl,+ A ( A l . l l )  

and because A is positive, we also have 

0 1  A < no+ A. (Al.12) 

When fl - 0  we have that Ut%(R) -+ +a, while f I M F ( R )  remains finite and negative. 
Therefore we have that for sufficiently small values of R 

Ueff(fl) > E.  (A1.13) 

The same is true for R I  < R < R o + A ,  as can be seen in figure 4. So in order to have 
a non-trivial motion ( p  # p , ,  p ‘ =  0), we need that 

O<R-<f l ,  ( A l .  14) 

or in other words 

Ueff(R) 4 E for f l-snsfl , .  
By using (A1.lO) we see that (A1.14) boils down to 

(Al.15) 

( A l .  16) 
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For A = 0 this inequality is satisfied when 

or H 2 < - 2 r  ( A l .  17) 

which is the condition for the existence of the single-kink solution. Now suppose that 

4 R o s  A < Ro. (A1.18) 

Then we have - n 0 + 3 A 2 0  and thus - R o + 3 A + H 2 / 2 s > 0 .  In this case (A1.16) is 
equivalent to 

H2 -<an, 
2s 

(A1.19) 

If we work this out we find 8A2 < 8RoA or A < no, which is true by supposition. Thus 
(A1.14) is true independently of the magnetic field strength H when A obeys (A1.18). 
Now suppose that 

(A1.20) 0 < A < fa,. 
Then for H2/2s < 0, - 3A we have that 

-R0+3A+ H2/2s  < 0 (A1.21) 

and thus we must conclude that (A1.16) is trivially satisfied. On the other hand when 

(A1.22) 

we have again -no+ 3A+ H2/2s 2 0 and so we can repeat the reasoning which we just 
gave in the complementary case (A1.18). 

Therefore we can conclude that (A1.14) is always true as long as AZO. This 
completes the proof of the definite ordering (Al .1) .  

H2/2s 3 Ro - 3 A  

Appendix 2 

In this appendix we will discuss the single-kink limit of the soliton lattice solution. 
This amounts to letting A go to zero (Rl+R,,) .  

First we will show that when A + O  (3.25), i.e. 

R ( ( ) = R - + ( R , - L )  sn’(A(, k )  (A2.1) 

reduces to (2.14), i.e. 
7 r U- 

R(4)  = ----sech2(ivt). (A2.2) 

- ( H 2  + 2r) > 0, we will impose this as an  

s 2s 

Because the single kink only exists for v 2  
extra condition, while taking the limit A + 0. This condition can also be written as 

H’ r -<n = - -  
2s O -  S . (A2.3) 

In this limit R I  (3.17) and R, (3 .18 )  go to 

01 --* 0 0  
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and 

H2 
2s a-+-- a+ + a, 

Therefore A and  k (3.24) go to 

A + f v  and k =  ( - n " l - " , 1 ) I i 2  + 1 .  

(A2.4) 

(A2.5) 

In this last limit, when the elliptic modulus k goes to 1 ,  the sine amplitude will go to 
the hyperbolic tangent, i.e. 

sn(A5, k )  + tanh(iv5). (A2.6) 

Thus if we combine all these results, we see that (A2.1) goes to 

which is equal to (A2.2). Now let us look at the phase 4 (3.32), i.e. 

(A2.7) 
L A  

with p 2 =  1 -a,/&. First of all when k +  1, the incomplete elliptic integral of the 
third kind n(4, P',  k )  goes to (see, for instance, [6]) 

II(& p2,  k )  + [ ln(tan 4 +sec 4 )  - @ In 
P - 1  1 - P  sin 4 

Because 4 = am(A5, k )  we have that sin 4 = sn(A5, k )  + tanh(Sv5). The coefficient P 
which is imaginary (cf (3.19)) goes to 

(A2.9) 

Therefore 4(A2.7) becomes in this limit 

1 ( 1  
+ (iv/ H )  tanh(tv5) 

2i 1 - ( i v / H )  tanh(tv5) 
= 4(0) -- In 

It is now not hard to see that this last expression is equal to 

4(0) - t an - ' ( (v /H)  tanh(iv6)) 

(A2.11) 

( A2.12) 

which is (2.15) apart from a constant. So both the phase and the amplitude of the 
single kink can be recovered from the corresponding quantities of the soliton lattice 
when A + 0. Finally, by using the following results: 

E ( k ) +  1 

and 

A - 1 - k Z + O [ (  1 - k 2 ) > ]  when k + 1 

(A2.13) 

(A2.14) 
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one can easily recover from (3.41), the energy of a static single kink which we calculated 
in I, namely 

YC2 
&,(single kink) =- ( - : r + d H 2 ) .  (A2.15) 

2s 
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